World War II Chemical Weapon Antidote May Also Fight Parkinson’s, Researchers Suggest

Jonathan Grinstein avatar

by Jonathan Grinstein |

Share this article:

Share article via email
dimercaprol for Parkinson's

Dimercaprol, an antidote to a World War II chemical weapon, was shown to be effective in removing a neurotoxin associated with Parkinson’s, revealing it as a possible treatment for the neurodegenerative disease.

Purdue University researchers report that the antidote can safely and effectively remove acrolein, a neurotoxic substance, from the body. Earlier this year, the researchers from the laboratory of professor Riyi Shi, MD, PhD, published their results on the chemical warfare antidote as a potential Parkinson’s treatment in the Journal of Neurochemistry.

Acrolein is a neurotoxin generated in the body after nerve cells are damaged and is directly linked to Parkinson’s disease. Exposure to acrolein increases pain and triggers a cascade of biochemical events thought to increase the severity of Parkinson’s and other neurodegenerative diseases.

The researchers administered dimercaprol to rats with increased levels of acrolein and nerve damage, a model applicable to Parkinson’s disease, and tested the ability of dimercaprol to block acrolein and neurodegenerative disease progression.

The Parkinson’s Disease News Today forums are a place to connect with other patients, share tips and talk about the latest research. Check them out today!

They observed that dimercaprol neutralized acrolein and eliminated it from the brain. Importantly, adding dimercaprol led to an increased survival rate of neurons, improved mobility, and less pain. They also demonstrated that dimercaprol could effectively neutralize acrolein in human cells.

Dimercaprol has several advantages over other chemicals that isolate and eliminate acrolein, including fewer side effects and being easily processed by the body and eliminated via the urine.

“Our studies show that by removing the toxin (acrolein) from the brain, we are not just reducing the symptoms of Parkinson’s disease but also significantly reversing the damage of Parkinson’s disease. This could actually provide a new treatment for Parkinson’s patients,” said Shi, a professor of neuroscience and biomedical engineering in Purdue’s Department of Basic Medical Sciences, College of Veterinary Medicine, and Weldon School of Biomedical Engineering.

Dimercaprol is already approved by the U.S. Food and Drug Administration to treat heavy metal poisoning, so it is known to be safe when administered to humans. Future clinical trials are necessary to test the effectiveness of dimercaprol as a treatment for patients with Parkinson’s and other neurodegenerative diseases.

“We believe that the drug’s classification and method of administration are what make it an attractive therapy option,” Shi said. “By systematically injecting the antidote drug directly into the abdominal cavity, it can be absorbed by the bloodstream and then travel to the brain, where the disease is most harmful and where the drug can most benefit the patient.”

The research was funded by grants from the National Institutes of Health, the Indiana State Department of Health, and the Indiana CTSI Collaboration in Biomedical Translational Research Pilot Program.